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Resumo 

 

This paper contrasts four different ways of handling similar triangles in Euclidean 

geometry, especially inscription: using 1) elementary geometry, 2) the so-called ‘modern 

geometry’, 3) a particular theory of ‘geometrical transformations’, and 4) a very general 

conception of polygons that also studies the letterings of the vertices of polygons. While all 

of these methods are known, the first is treated more systematically than usual while the 

latter three are not as well recognised as they deserve to be. Some seemingly new properties 

of similar triangles are presented. 
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[FORMAS DISSIMILARES DE SE INSCREVER TRIÂNGULOS SIMILARES] 

 

 

Resumo 

 

Este trabalho contrasta quarto maneiras diferentes de lidar com triângulos similares em 

geometria euclidiana, especialmente inscrição: usando 1) geometria elementar, 2) a 

amplamente comentada ‘geometria moderna’, 3) uma teoria particular de ‘transformações 

geométricas’, e 4) uma concepção bastante ampla de polígonos que também estuda os 

letramentos dos vértices de polígonos. Enquanto todos estes métodos são conhecidos, o 

primeiro é tratado mais sistematicamente que o usual, enquanto os últimos três não são tão 

bem conhecidos como merecem sê-lo. Algumas propriedades aparentemente novas de 

similaridade entre triângulos são apresentadas. 

 

Keywords: Triângulos similares, geometria moderna, transformações geométricas, n-

ágonos, ensino de geometria. 
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1. Introduction 

 

Ever since Euclid presented a formidable body of theorems about polygons and 

circles, plane geometry has been a fruitful source of further results. In addition, a variety of 

types of proofs gradually emerged: not only those based upon Euclid’s own repertoire but 

also some that required more complicated geometrical constructions, and those that drew 

upon other branches of mathematics such as the calculus and various algebras.  

In this paper we exhibit a range of seemingly new results that relate a planar 

triangle ∆ABC to similar triangles ∆PQR inscribed within it according to certain criteria. 

The study was undertaken in the hope of emulating a resent examination of properties of 

rectangles that are inscribed inside rectangles [Grattan-Guinness 2012]. The proofs given 

here are geometrical, some of a Euclidean kind (section 2) but others of a more elaborate 

cast (section 3). Then two types of proof that use algebras are aired; one of them also 

formulates parts of the underlying logic (sections 4 and 5).  

Throughout the mathematics is suitable for teaching purposes; several points for 

classroom discussion or potential exercises are mentioned.  Some relevant books and papers 

are cited and discussed, but no comprehensive literature review is attempted. 

 

2. Using elementary Euclidean geometry 

 

2.1 Configurations. ‘Similar triangles’ means that each angle in one triangle is 

equal to one in the other. ∆PQR is ‘totally inscribed’ in ∆ABC if it lies entirely within it, 

with at least one of its vertices not lying on a side. We can construct such a triangle by 

drawing its own sides inside and parallel to those of ∆ABC. It can also be moved around 

within ∆ABC to some extent; the various triangle inequalities [Nelson 2008] are useful. 

We do not discuss this kind further, but focus upon cases where P, Q and R lie on 

the sides AB, BC and CA, and moreover on their interiors and not at their end-points A, B 

and C themselves. We confine the discussion to this “narrow” sense of inscribing ∆PQR; it 

could be extended to cover the “broad” sense where some of those vertices coincide with A, 

B or C or lie upon the extensions of the appropriate sides of ∆ABC. These distinctions are 

customarily made in this kind of geometry. 

We associate P, Q and R with the respective angles A, B and C. There are 

six different ways of locating these vertices on the sides of ∆ABC, three with P, Q and R 

oriented clockwise and the other three read anticlockwise. Figure 1 shows examples of the 

six configurations for ∆ABC and the orientations. Each case is labelled in the style 

‘(RPQ)’, which indicates the angles that are subtended by the vertices on AB, BC and CA 

in that order. ∆ABC is composed of the “inner” similar ∆PQR and three non-similar 

“outer” triangles. If we reflect each configuration about one of the sides of ∆ABC, then we 

obtain the sextet that pertains to the reflexively congruent triangle to ∆ABC, but no new 

information is obtained. 
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Figure 1. 

 

 

2.2 When opposite angles are equal. From now on we concentrate on the case 

(RPQ) that stipulates that equal angles in ∆ABC and ∆PQR be placed opposite each other: 

∠P =∠A, ∠Q= ∠B and ∠R = ∠C. 

Similarity entails that the corresponding sides of the two triangles are the same ratio (T, 

say): 

T = PQ/AB = QR/BC = RP/CA < 1.  (1) 

Each of the other five cases can be treated by the methods about to be described. 

One way to determine ∆PQR is to assume the point A and the directions AB and 

AC and set through A a line Ln in any direction that lies outside the sector embraced by the 

two directions and thus cuts both AB and AC when it is moved parallel to itself. Choose 

any position of Ln to define Q and R as its respective points of intersection with AB and 

AC, and find P as the point of intersection of the lines inside the sector from Q set at ∠B to 

QR and from R set at ∠C to QR. B and C are found by placing a line through P and rotating 

it until we find either the point B on the extended AR while ∠ABC = ∠B or the 

corresponding point C on the extended AR where ∠ACB = ∠C. 

This construction works backwards, specifying ∆PQR and finding ∆ABC; when 

read in the proper reverse order, we realise that it is not always possible to construct ∆PQR. 

In the example just described, ∠I must be small enough for BQ to intersect with CA at all, 

and ∠AQR = (C – B + I) large enough for QR to meet CB. 
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Assuming that the construction is possible, we specify the chosen direction Dn of 

(say) PQ by ∠CPQ, which we name ∠I. Given this angular measure between ∆PQR and 

∆ABC and the choice of angles to be placed at its three vertices, ∆PQR is unique relative to 

∆ABC and some unit of measure. For each line parallel to PQ and placed above or below 

the one shown in the diagram will lead to the third vertex that indeed lies on CR but is 

inside or outside the ∆ABC; so conditions of continuity suggest only one triangle.  

Alternatively, ∆PQR is unique for the location of one of the points on a side (for instance, 

for P on BC) and choice of angles. The scrupulous can specify continuity rigorously by, for 

instance, the usual Cantorian or Dedekindian procedures. 

A variant method is to choose any point R on (say) AB, draw two lines at R with 

angular separation C and turn the pair of lines around R as centre until the points Q and P 

are located. Conditions of continuity again guarantee the uniqueness of the construction, 

although they stand out less clearly than in the previous version.  

 

2.3 On the circumradii. We now turn to some properties of these triangles, 

especially the requirement that PQ subtends ∠C at both C and R.  

1) It follows that the circumradii of ∆PQC equals that of ∆PQR; for the same 

reason, so do the circumradii of ∆RPB and of ∆QRA. Thus if C is reflected about PQ to 

move to point C´, then PQRC´ is a cyclic quadrilateral, to which Ptolemy’s theorem 

applies. If A and B are reflected similarly and separately to create the points A´ and B´, 

then we have the same cyclic quadrilateral twice more; and also the cyclic hexagon 

PA´QB´RC´, to which Pascal’s collinearity theorem applies.  

 

2) How large is ∆PQR relative to ∆ABC? The size is a function of Dn.  Let T be 

the ratio of corresponding sides on ∆PQR and ∆ABC; setting the circumradii of ∆PQR as r 

and of ∆ABC as U, then T= r/U < 1. The areas of the triangles relate as follows: 

Ar(∆ABC) = Ar(∆PQR) + Ar(∆AQR) + Ar(∆BRP) + Ar(∆CPQ); 

thus  Ar(∆AQR) + Ar(∆BRP) + Ar(∆CPQ) = (1 – T
2
)Ar(∆ABC). 

The corresponding result for the perimeters is  

Per(∆AQR) + Per(∆BRP) + Per(∆CPQ) = (1 + T)Per(∆ABC). 

But further progress is not obvious; in particular, the formula for the area of any triangle 

∆LMN with circumradius Y, 

Ar(∆LMN) = 2Y
2
 sinL sinM sinN 

leads to clumsy trigonometry.  

 

3) A better move is to determine T from (1). Since all four triangles comprising 

∆ABC have the same circumradius, the sine law states that each side of any of the four 

triangles is in the same ratio to its opposite angle(s); for example, 

PQ/sinB = CP/sin(C + I) = 2TU, 

while for ∆ABC, AB/sinC = 2U. So take, say,  

1/T = BC/QR = (CP + PB)/QR; 

Then  1/T = [sin(π – C – I) + sin(A + I – B)]/sinA 

      = 2 [sin½(π – 2I + 2B) cos½(A – π)]/sinA = 2 cos(I - B); 

hence  T = ½sec (I – B). 
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Since T < 1, sec(I -B) >  ½, so that (∠I– ∠B) < π/6.  

The presence of ∠B in this formula does not arise from a special status over ∠A 

and ∠C, but from our decision to specify Dn with ∠I at C; relative to it ∠B at Q is its 

alternate. Had we chosen instead ∠AQR =∠J at Q, for instance, then the determination of T 

would have used (J – A) rather than (I – B), since  

B + J = A + I.  The relation A + B + C = π 

causes the capacity for multiple specifications of angles.  

 

4) Our configuration complements that of the orthic triangle of the acute-angled 

∆ABC, that is, the triangle whose vertices are the feet of the three (concurrent) altitudes 

AL, BM and CN; for it is known that ∆LMN is not similar to ∆ABC but that its three outer 

triangles are [Altshiller-Court 1952, 97]. Thus if, say, L and M were chosen as P and Q 

respectively in our configuration, then either R is not N or the construction cannot be 

completed at all.  

5) Among other results, the smallest value of T is given by ∠I = ∠B: P, Q and R 

are the midpoints of their respective sides, the four triangles are congruent, and their 

corresponding sides are parallel (Figure 2). Again, if ∆ABC is acute-angled, setting ∠I = (π 

-2C) makes ∆QPC isosceles at P, and its neighbour ∆RAQ along AC is isosceles at R 

(Figure 3). This property applies also the triangles on AB with vertices Q and P, and on BC 

with P and Q. In Figure 1 ∠C happens to be obtuse, so this property holds only along AB. 

 

 
Figure 2: the mid-points triangle. 
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Figure 3: isosceles triangles. 

 

 

2.4 Extensions.  

1) The process of inscribing similar triangles can be iterated indefinitely, where 

the relative linear sizes are determined by the ratios T, T
2
, T

2
, …; the iteration is launched 

in Figure 4.  The lengths of the sides of the successively inscribed triangles decrease 

monotonically toward zero, so that ∆PQR moves towards a point. However, the angular 

positions of the successive triangles do not tend to any final direction. This somewhat 

unusual limit process obtains in other constructions of this kind, such as the inscription of 

rectangles inside rectangles. 

 
Figure 4: the next two inscribed triangles. 

 

2) ∆ABC can also be circumscribed in ways corresponding to inscription (again, 

we specify circumscription narrowly). The diagrams in  Figure 1 may be reread as starting 

with ∆PQR, choosing a line Ln that passes through (say) P in any direction that keeps it 

outside ∆PQR, and fixing the points B and C on Ln such that PBR = RQP and PCQ = 

QRP. We can start with R or S instead, circumscribe iteratively a finite number of times 

to create diagrams of sizes
 
T

-n
, create totally inscribed or circumscribed triangles at will, 

explore properties of encircles, and work with the reflexively congruent triangle to ∆PQR. 
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3) The analogous theory in solid geometry concerns the construction of a similar 

tetrahedron inside a tetrahedron. While there are many theorems about tetrahedra (for 

example, [Altshiller-Court 1964, ch. 4]), none seems to suggest properties of use here. 

 

3. Using ‘modern geometry' 

 

3.1 Further properties of this case. From the 1920s and especially in the USA, this 

name came to be attached to a large body of theorems in Euclidean geometry that are 

associated with a thicket of special points, straight lines and circular arcs that nestle inside 

often complicated diagrams: nine-point circle, Simson line, pedal triangle, Apollonios 

circles, and so on, some named after their supposed creators. Several theorems and 

constructions are relevant here. We continue with the case of opposite angles being equal. 

 

1) Ignoring similarity, there is the theorem that the circumcircles of ∆AQR, ∆BRP 

and ∆CPQ intersect at a point M that is named after its discoverer [Miquel 1838]. Since two 

triangles inscribed in ∆ABC are similar if and only if they have the same Miquel point, M 

is also that point for ∆ABC, and also for every similar triangle produced by iteration. 

Conversely, given ∆ABC and M, there are indefinitely many trios of circles for which M is 

the Miquel point, and the triangles associated with each trio are similar to each other. A 

further property of a Miquel point is that the lines from M to P, Q and R make the same 

angle with the associated sides of ∆ABC; so M is also a Brocard point of ∆PQR.  

We saw in section 2.3 that the three outer triangles have the same circumradius r; 

so their centres lie on the circle with centre M and radius r (and in any case form a triangle 

similar to ∆ABC).  Figure 5 shows all five equal circles, with the three outer circles drawn 

with thinner lines. M lies just outside ∆ABC because C happens to be slightly obtuse.  

 
Figure 5: five circles of the same radius. 
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2) Several other theorems can be taken as embodying methods for inscribing 

and/or circumscribing (similar) triangles and finding properties of the configurations. For 

example, Ptolemy’s theorem applies also to the cyclic quadrilaterals MQAR, MRBP and 

MPCQ, which together comprise ∆ABC. Again, further properties arises from drawing and 

considering AP, BQ and CR; for instance, if AP, BQ and CR are concurrent (at point Z, 

say), then the two triangles are in perspective with Z as centre and the line at infinity as 

axis, and iteration produces the attractive process in which the sides of the successive 

triangles are alternately parallel to those of their parent triangles, and P, Q and R tend down 

their respective chords towards.  

Rich selections of results are provided in [Johnson 1929, chs. 7, 16-17] and 

[Shively 1934, chs. 2 and 5]. Unfortunately many of them require too elaborate a context 

for summary or illustration here. Some of them can be extended to allow for apply to the 

broader senses of inscription and circumscription of triangles that were noted in section 2.1.  

 

3.2  Unfamiliarity. Although it overlaps both with elementary Euclidean and with 

projective geometry, modern geometry has always been rather fugitive in mathematics and 

mathematics education (see [Romera-Lebret 2012] for an excellent historical summary). 

For examples from Germany, the school-teacher A. Emmerich produced, for teaching 

purposes, an excellent survey and bibliography [1891] of ‘The Brocard structure and its 

relationships to the remarkable related points and circles’. Modern geometry also featured 

quite well in the volume on geometry of the great Encyklopädie der mathematischen 

Wissenschaften (see especially [Burkhan and Meyer 1921] on the ‘newer triangle 

geometry’). However, the director of that work, Felix Klein, gave it little attention in his 

famous survey of elementary geometry from an advanced standpoint [1925]. 

A modest tradition developed in the USA for teaching modern geometry. A 

pioneer author was Roger A. Johnson, with a book [1929] with that title,
1
 in which he gave 

several references. But consider his teacher, J. L. Coolidge. A large survey of ‘the geometry 

of the circle and the sphere’ [1916] began with a long chapter on elementary geometry in 

which this material was prominent, with separate sections on Brocard and Miquel points. 

However, his later ‘history of geometrical methods’ [1940] omitted it almost completely. 

Maybe the reason was that it did not exhibit new methods as such, but he did not use it as 

source of cases; his bibliography did not even include Johnson. 

Modern geometry was encouraged later by books such as [Shively 1934] and 

[Coxeter and Greitzer 1967], and enriched for solid geometry in [Altshiller-Court 1964]. 

However, for some reason the bulk of books and textbooks on geometry did or do not give 

much attention to this branch, often not at all; for example, I cannot recall any mention of it 

at all in my own school or university education in Britain.
2
  

                                                           
1 Note the trendy use of ‘modern’, evident also in the ‘modern algebra’ (1930-1931) of B. L. van der Waerden; 

later the alternative name ‘advanced Euclidean geometry’ came in, including in the 1960 reprint of Johnson’s 

book. ‘Modem analysis’ had appeared as a title in the early 1900s, signifying the use of set theory. 
2 Continued fractions is another of these strangely fugitive topics in mathematics. At present I am working on a 

similarly fugitive topic, the couple in statics; it was recognised as a basic feature of mechanics only in 1803, by 
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Coolidge’s actions also exemplify that the history of modern geometry has been 

patchily handled. Max Simon cited many results in his superb bibliographical survey of ‘the 

development of elementary geometry during the 19th century’, prepared for the Deutsche 

Mathematiker-Vereinigung [1906, especially parts D and E]; this work headed Johnson’s 

literature review [1929, vi]. In addition, the Scot J. S. Mackay wrote diligently at that time 

on parts of the history. But these are the exceptions; more normal is a recent distinguished 

general history of geometry that treats most branches but not this one [Schreiber and Scriba 

2010].  

  

4. Yaglom on transformations 

 

As part of a delightful and wide-ranging survey of ‘geometric transformations’ the 

Russian mathematician Isaak Moiseevich Yaglom (1921-1988) examined in [1968] ‘spiral 

similarities’, which are based upon properties of the equiangular spiral Sp, a curve higher in 

order than the circle and sphere of elementary and modern geometry. Call its origin O, and 

choose the direction OM of the tangent at O: then an arbitrary point Z on it has polar 

coordinates (r, θ) where r = OZ and θ = MOZ. Its equation is given by 

r = h exp (θ cot k), where h and k are constants, (2) 

k being the angle between OZ and the tangent to Sp at Z. To fit ∆ABC on Sp, choose one of 

its vertices as O and determine h and k by requiring (2) to be satisfied by the coordinates of 

the other two vertices. In the particular configurations shown in Figure 1, B is a suitable 

choice for O, and the spiral rotates in either the clockwise or anti-clockwise direction to 

pass through A and C. In general a spiral is not unique for a configuration.  

The exponential character (2) of Sp ensures that it passes through the vertices of 

not only ∆ABC but also (by conditions of continuity) the vertices of every inscribed similar 

∆PQR that is produced by iterations as Z slides down to A, thereby effecting the 

construction [Yaglom 1968, 38 (problem), 119-121]; the iterated inscriptions shown in 

Figure 4 shows four positions of the triangles as the spiral rotates. This situation can also be 

read conversely: Sp passes through every similar circumscribed ∆ABC of ∆PQR. Both 

processes are prettily represented on the computer by rotations [Thron 2011]; they 

correspond to case (PRQ) in Figure 1, and Brocard point’s feature well. 

Further, the anticlockwise spiral dual to Sp deals with the triangle that is 

reflexively congruent to ∆ABC. The two cases of permuted vertices can be handled, though 

with different spirals. Yaglom applies it also to some other polygons, including to 

rectangles in the passages cited here; so his book should be added to the bibliography of my 

recent paper on inscribing rectangles [Grattan-Guinness 2012]. However, he does not 

invoke continuity or any other property to guarantee the existence of ∆PQR. 

The theory of spiral similarities was inspired to some extent by Klein’s conception 

[1925] of geometries in terms of transformations and the attendant algebraic structures. Part 

of the general theory of tilings and tessellations, it is summarised in [Coxeter and Greitzer 

1967, 95-100].  

                                                                                                                                                    
Louis Poinsot in his textbook Eléments de statique, which is still one of the best sources to learn the theory; for 

some reason is omitted from almost all histories of mechanics that cover that period. 
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5. Bachmann on polygons and their letterings 

 

5.1 Principles. The use in geometry of algebras — common, vector, linear, 

abstract, Grassmann — needs no rehearsal here. But there is an intriguing variant due to the 

German logician and mathematician Friedrich Bachmann (1909–1982); working with 

Eckart Schmidt, he elaborated a theory of polygons, which he called ‘n-gons’ [Bachmann 

and Schmidt 1970].  

The starting-point is the theorem that the midpoints of any ‘quadrangle’ Ql form 

the vertices of a parallelogram Pm; it is easily proved by consideration of similar triangles. 

Given Ql, Pm is unique, but not vice versa; and while Pm is always planar, Ql might not be. 

Similar triangles form an example [fig. 6; also [Bachmann 1971], 290]: given the 3-gon 

∆PQR, determine a similar circumscribed ∆ABC where P, Q and R are midpoints of its 

sides.  

The theory works with an m-dimensional vector space defined over a field such as 

the rational numbers, which provide continuity conditions. An n-gon is a closed figure of 

up to m dimensions in V, specified by 1) a finite set of vertices, each one determined by a 

(free) vector; 2) the order in which the vertices are taken, with each one joined to its 

successor by a straight line, called a ‘side vector’; and 3) the choice of a vertex as first in 

that order, and therefore also the last. The novelty lies in 2) and 3), with a lettering of a 

figure treated as a kind of mathematical “object”; maybe Bachmann’s training as a logician 

(under Heinrich Scholz at Münster) led him to consider it.  

To each vertex there corresponds just one vector, but the converse is not 

necessarily the case in that a vertex may belong more than once to an n-gon, which 

becomes an ordered multiset of vertices. In particular, the centre-of-gravity n-gon of any n-

gon N, be it a set or a multiset of vertices, is a multi-unit set containing only the vertex 

corresponding to the vector defined by the arithmetic mean of all the vertices of N but 

chosen once for each of them [p. 16].  

Particular kinds of n-gon are specifiable. For example [p. 15], the parallelogram is 

the 4-gon IJKL (in that order of its vertices) of which the corresponding coplanar side 

vectors satisfy  

(j – i) + (l – k) = o (the vector zero). 

 

5.2 Mappings. The bulk of the theory concerns the mapping of an n-gon onto an n-

gon. Of special interest are mappings of an n-gon onto itself but with a reordering of its 

vertices; in particular, ‘cyclic permutations’ such as of (I, J, K, L) to (K, L, I, J), Take any 

n-gon, form the (n - 1) n-gons resulting from every cyclic permutation of its vertices {ar}, 

and assume that each n-gon exhibits the same linear dependence of its vertices over K; that 

is, they satisfy the set of n equations 

∑r cr a(r + p)(mod n) = o, where the given cr  K, 0 ≤ r ≤ n – 1 and 1 ≤ p ≤ n.  

Then this set of n-gons forms a ‘cyclic class’ [ch. 1]; for example, the four cycles of vectors 

{i, j, k, l} of the parallelogram above. A ‘cyclic mapping’ of all n-gons N into n-gons O 

with vertices {br} requires that K contains elements cr that satisfy  
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∑r cr a(r + p)(mod n) = br, 0 ≤ r ≤ n – 1, 

[ch. 2]. The n-gon defined from a given n-gon as containing the same vertices but taken in 

the reverse order has a theory of ‘anticyclic classes’ [ch. 12]. The vertices of an n-gon may 

be mapped onto points on another n-gon that are not among its vertices, such as the mid-

points of the sides of Ql in the starting-point above. 

Mappings can be iterated and compounded, and the attendant properties studied in 

operator algebra. An important example of iteration is any ‘idempotent’ mapping ƒ of a set 

(not necessarily an n-gon) that satisfies the Boolean law ƒƒ = ƒ; it is called a ‘projection’. In 

particular, cyclic mappings of n-gons are cyclic projections because the permutation of a 

permutation is a permutation [ch. 5]. Idempotence occurs also in the optimal elements 0 and 

1 of an algebra (where 00 = 0 and 11 = 1). The ‘main theorem’ of the theory is that the 

mappings of the cyclic classes of n-gons form a finite Boolean algebra, which is a sub-

lattice of the lattice of the sub-spaces of V [ch. 6]. Properties are proved about many kinds 

of n-gon, and the mappings to which they are subject. Those involving similar triangles are 

not highlighted, but they are expressible in the theory, indeed in enriched forms that take 

accounts of letterings. For example, relabelling the six cases in Figure 1, and other such 

cases, could be undertaken by treating permutations as operators. 

The theory made some impact on publication. Bachmann and Schmidt wrote their 

book in German, which appeared in 1970: the English translation appeared in 1975, and 

meanwhile Yaglom had edited the Russian translation of 1973. There was some educational 

stimulus for the theory; both authors published on it in journals on mathematics education, 

especially [Bachmann 1971]. But since then interest in it seems to have declined; perhaps 

the frequent dominance of the algebras over the geometry deterred potential students. So it 

joined modern geometry, in the shadows. 
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