A MATEMÁTICA RECREATIVA DE EULER: NÚMEROS AMIGOS

Autores/as

  • Nelo D. Allan neloallan@gmail.com
    Universidade do Estado de Mato Grosso, Campus de Cáceres

DOI:

10.47976/RBHM2009v9n1777-88

Palabras clave:

matemática recreativa, teoria dos números, números amigos

Resumen

A teoria de números até o século XVIII era considerada como matemática recreativa. Estudados pelos gregos, os números especiais tinham significados astrológicos, cotidianos ou filosóficos. Nesta categoria estão os números perfeitos, abundantes, amigos, poligonais, fórmulas para primos e primos especiais como os de Mersenne. Estes tópicos também foram tratados por Fermat. Muitos destes problemas apresentam questões que até hoje estão em aberto; foi o que atraiu Euler. Apesar de não resolver a maioria dos problemas envolvidos, o trabalho de Euler teve um impacto profundo nestes tópicos. Aqui ele desenvolve a teoria de congruências e a de funções multiplicativas. O tópico de que vamos tratar é a teoria dos números amigos. Um par de números chama-se amigo se cada um dos números é a soma dos divisores próprios do outro, como, por exemplo, o par {220, 284}, conhecido desde a Antiguidade. Por volta do século IX, Thabit ibn Qurrat apresentou uma fórmula que forneceu mais dois novos pares redescobertos por Fermat e Descartes. O gênio de Euler transformou as três soluções em 60. Hoje sabemos mais de onze milhões de pares. Nosso objetivo é fazer comentários sobre os três trabalhos de Euler neste tópico.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Citas

Euler, Leonhard. 1747a. “De numeris amicabilibus”, Nova acta eruditorum, 1747, 267-269. Também em Opera Omnia, Series I, vol. 2, pp. 59-61 (Índice de Eneström E100).

–––. 1747b. “De numeris amicabilibus”. Opuscula varii argumenti, vol. 2, pp. 23-107 (Berlim, 1750). Também em Opera Omnia, Series I, Vol. 2, 86-162 (Índice de Eneström E152).

–––. 1747c. “De numeris amicabilibus”. Commentationes arithmeticae, vol. 2, 627-636. Também em Opera Omnia, Series I, vol. 5, 353-365 (Índice de Eneström E798).

Garcia, M., Pederson, J. T. e Riele, H. 2003. Amicable Pairs. Amsterdam,NI: MAS.

Sandifer, E. 2005. How Euler Did It, MAA Online.

Dickson, L. 1971. History of Number Theory, vol. I. Nova York: Chelsea.

Van Schooten, Frans. 1657. Exercitaciones mathematicae, vol V. Leiden.

Van der Waerden, B.L. 1985. History of Algebra. Nova York: Springer.

Publicado

2020-11-03

Métricas


Visualizações do artigo: 1025     PDF (Português (Brasil)) downloads: 300

Cómo citar

ALLAN, Nelo D. A MATEMÁTICA RECREATIVA DE EULER: NÚMEROS AMIGOS. Revista Brasilera de História de la Matemática, São Paulo, vol. 9, n.º 17, p. 77–88, 2020. DOI: 10.47976/RBHM2009v9n1777-88. Disponível em: https://rbhm.org.br/index.php/RBHM/article/view/171. Acesso em: 28 nov. 2024.

Número

Sección

Artigos