THE LINEAR INDETERMINATE EQUATION - A BRIEF HISTORICAL ACCOUNT
DOI:
10.47976/RBHM2015v15n3083-94Palabras clave:
Indeterminate equation, Chinese remainder theorem, Aryabhata, Kuttaka, Brahmagupta, BhaskaraResumen
The paper presents in brief the contribution of Aryabhata in developing general solution of indeterminate equation of the type ax + c = by, where a, b, c are the integers. Also the contributions of Bhaskara and Brahmagupta in developing the solution of the indeterminate equations are discussed. Finally an example of Paramesvara is illustrated to solve coupled linear indeterminate equations which may be adopted to find the multiplicative inverse in a group that is of interest in cryptology, signal processing, coding and computer design.
Descargas
Los datos de descargas todavía no están disponibles.
Métricas
Cargando métricas ...
Citas
AYANGAR, A.A. K, 1926, The Mathematics of Aryabhata, Quarterly Journal of Mythic Society, Vol.16, pp 158-179.
BAG, A. K., 1977, The method of Integral Solution of Indeterminate Equations of the type by=ax +/- c in Ancient Medieval India, Indian Journal of History of Science, Vol.12, pp. 1-16.
CLARK, W. E., 1930, The Aryabhatiya of Aryabhata : Translation with notes, The University of Chicago Press, Chicago, Illinois.
DATTA, B. and Singh, A. N. ,1962, History of Hindu Mathematics, a source book, Parts 1 and 2, Asia Publishing House, Bombay.
Elements of Euclid (Translation and commentaries by Heath, Thomas, L.), Dover Publications, 1956.
HANG, Chin-Chen and YANG, Jen –Ho, 2009, A parallel algorithm base don Aryabhatta remainder Theorem for Residue number System, International Journal of Innovative Computing, Information and Control, Vol. 5(7), pp. 2053 - 2060.
BAG, A. K., 1977, The method of Integral Solution of Indeterminate Equations of the type by=ax +/- c in Ancient Medieval India, Indian Journal of History of Science, Vol.12, pp. 1-16.
CLARK, W. E., 1930, The Aryabhatiya of Aryabhata : Translation with notes, The University of Chicago Press, Chicago, Illinois.
DATTA, B. and Singh, A. N. ,1962, History of Hindu Mathematics, a source book, Parts 1 and 2, Asia Publishing House, Bombay.
Elements of Euclid (Translation and commentaries by Heath, Thomas, L.), Dover Publications, 1956.
HANG, Chin-Chen and YANG, Jen –Ho, 2009, A parallel algorithm base don Aryabhatta remainder Theorem for Residue number System, International Journal of Innovative Computing, Information and Control, Vol. 5(7), pp. 2053 - 2060.
Descargas
Publicado
2020-10-30
Métricas
Visualizações do artigo: 233 PDF (Português (Brasil)) downloads: 173
Cómo citar
SHUKLA, Kedar N. THE LINEAR INDETERMINATE EQUATION - A BRIEF HISTORICAL ACCOUNT. Revista Brasilera de História de la Matemática, São Paulo, vol. 15, n.º 30, p. 83–94, 2020. DOI: 10.47976/RBHM2015v15n3083-94. Disponível em: https://rbhm.org.br/index.php/RBHM/article/view/86. Acesso em: 24 nov. 2024.
Número
Sección
Artigos